LLMs用於自動化客戶支持培訓
Large Language Models (LLMs) 是一種處理和生成類似人類文本的人工智慧,可實現更自然、更有效的自動化客戶支援。
這種以講師為主導的現場培訓(在線或現場)面向希望實施 LLM 以創建回應迅速且智慧的客戶支援聊天機器人的初級到中級客戶支援和 IT 專業人員。
在培訓結束時,參與者將能夠:
- 瞭解 Large Language Models (LLMs) 的基礎知識和架構。
- 設計 LLM 並將其整合到客戶支援系統中。
- 增強聊天機器人的回應能力和用戶體驗。
- 解決道德考慮並確保符合行業標準。
- 為實際應用程式部署和維護基於 LLM 的聊天機器人。
課程形式
- 互動講座和討論。
- 大量的練習和練習。
- 在現場實驗室環境中動手實施。
課程自定義選項
- 如需申請本課程的定製培訓,請聯繫我們進行安排。
課程簡介
Large Language Models (LLMs) 簡介
- 客戶支援中的 AI 概述
- LLM的基礎
- 聊天機器人的演變:從簡單的腳本到人工智慧驅動的支援
LLM的架構
- 瞭解 LLM 的構建塊
- LLM 中的神經網路和深度學習
- 訓練 LLM:數據、演算法和計算資源
在聊天機器人中實現 LLM
- 現有系統中 LLM 的整合策略
- 設計對話流和使用者交互
- 確保上下文理解和連貫性
增強聊天機器人的回應能力
- 即時回應生成技術
- 處理併發對話
- 個人化和預測性支援
用戶體驗和介面設計
- 製作使用者友好的聊天機器人介面
- 視覺和文本提示,提高參與度
- 反饋迴圈和持續改進
道德考量與合規
- LLM 的隱私和數據安全
- 在客戶支援中合乎道德地使用人工智慧
- 遵守行業標準和法規
測試和部署
- 質量保證和測試方法
- 可伸縮性和可靠性的部署策略
- 聊天機器人系統的監控和維護
案例研究和實際應用
- 分析 LLM 聊天機器人的成功實施
- 經驗教訓和最佳做法
- 人工智慧驅動的客戶支持的未來趨勢和創新
專案與評估
- 設計和構建基於 LLM 的聊天機器人
- 同行評審和小組討論
- 最終評估和反饋
摘要和後續步驟
最低要求
- 瞭解基本程式設計概念
- 建議有 Python 程式設計經驗,但不是必需的。
- 熟悉基本的機器學習概念是有益的
觀眾
- 客戶支援專業人員
- IT 專業人員
- Business 分析師
Open Training Courses require 5+ participants.
LLMs用於自動化客戶支持培訓 - Booking
LLMs用於自動化客戶支持培訓 - Enquiry
LLMs用於自動化客戶支持 - 咨詢詢問
咨詢詢問
Upcoming Courses
相關課程
高級LangGraph:複雜圖的優化、調試與監控
35 時間:LangGraph 是一個用於構建有狀態、多參與者 LLM 應用的框架,它支持將應用構建爲具有持久狀態和執行控制的可組合圖。
本次由講師主導的培訓(線上或線下)面向高級 AI 平臺工程師、AI DevOps 和 ML 架構師,旨在幫助他們優化、調試、監控和操作生產級 LangGraph 系統。
通過本培訓,參與者將能夠:
- 設計和優化複雜的 LangGraph 拓撲結構,以提高速度、降低成本並增強可擴展性。
- 通過重試、超時、冪等性和基於檢查點的恢復機制來構建可靠性。
- 調試和追蹤圖執行過程,檢查狀態,並系統地復現生產問題。
- 爲圖添加日誌、指標和追蹤,部署到生產環境,並監控 SLA 和成本。
課程形式
- 互動式講座和討論。
- 大量練習和實踐。
- 在即時實驗室環境中進行實際操作。
課程定製選項
- 如需定製本課程,請聯繫我們安排。
Advanced Ollama Model Debugging & Evaluation
35 時間:Advanced Ollama Model Debugging & Evaluation is an in-depth course focused on diagnosing, testing, and measuring model behavior when running local or private Ollama deployments.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI engineers, ML Ops professionals, and QA practitioners who wish to ensure reliability, fidelity, and operational readiness of Ollama-based models in production.
By the end of this training, participants will be able to:
- Perform systematic debugging of Ollama-hosted models and reproduce failure modes reliably.
- Design and execute robust evaluation pipelines with quantitative and qualitative metrics.
- Implement observability (logs, traces, metrics) to monitor model health and drift.
- Automate testing, validation, and regression checks integrated into CI/CD pipelines.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs and debugging exercises using Ollama deployments.
- Case studies, group troubleshooting sessions, and automation workshops.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
使用Ollama構建私有AI工作流程
14 時間:這是一個由講師指導的線上或線下培訓,針對希望使用Ollama實現安全高效的AI驅動工作流程的高級專業人士。
通過本培訓,參與者將能夠:
- 部署和配置Ollama以進行私有AI處理。
- 將AI模型集成到安全的企業工作流程中。
- 在保持數據隱私的同時,優化AI性能。
- 利用本地AI功能自動化業務流程。
- 確保符合企業安全與治理政策。
使用Ollama部署和優化LLM
14 時間:這是一場由講師指導的現場培訓,地點在香港(線上或現場),適合希望使用Ollama部署、優化和整合LLM的中級專業人士。
在培訓結束時,參與者將能夠:
- 使用Ollama設置和部署LLM。
- 優化AI模型以提升性能和效率。
- 利用GPU加速提升推理速度。
- 將Ollama整合到工作流程和應用程式中。
- 監控和維護AI模型的長期性能。
Fine-Tuning 與在 Ollama 上自訂 AI 模型
14 時間:這項由講師指導的香港(線上或線下)培訓,針對希望微調和自訂Ollama上的AI模型以提升性能和特定領域應用的高級專業人士。
在培訓結束時,參與者將能夠:
- 在Ollama上設置高效的AI模型微調環境。
- 準備用於監督式微調和強化學習的數據集。
- 優化AI模型的性能、準確性和效率。
- 在生產環境中部署自訂模型。
- 評估模型改進並確保其穩健性。
LangGraph Applications in Finance
35 時間:LangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based finance solutions with proper governance, observability, and compliance.
By the end of this training, participants will be able to:
- Design finance-specific LangGraph workflows aligned to regulatory and audit requirements.
- Integrate financial data standards and ontologies into graph state and tooling.
- Implement reliability, safety, and human-in-the-loop controls for critical processes.
- Deploy, monitor, and optimize LangGraph systems for performance, cost, and SLAs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph基礎:基於圖的LLM提示與鏈式編程
14 時間:LangGraph 是一個用於構建圖結構 LLM 應用的框架,支持規劃、分支、工具使用、內存和可控執行。
本次由講師指導的培訓(線上或線下)面向初級開發者、提示工程師和數據從業者,旨在幫助他們使用 LangGraph 設計和構建可靠的多步驟 LLM 工作流。
培訓結束後,參與者將能夠:
- 解釋 LangGraph 的核心概念(節點、邊、狀態)及其使用場景。
- 構建支持分支、調用工具和保持內存的提示鏈。
- 將檢索和外部 API 集成到圖工作流中。
- 測試、調試和評估 LangGraph 應用的可靠性和安全性。
課程形式
- 互動講座和引導討論。
- 在沙盒環境中進行指導實驗和代碼演練。
- 基於場景的設計、測試和評估練習。
課程定製選項
- 如需爲此課程定製培訓,請聯繫我們安排。
LangGraph in Healthcare: Workflow Orchestration for Regulated Environments
35 時間:LangGraph enables stateful, multi-actor workflows powered by LLMs with precise control over execution paths and state persistence. In healthcare, these capabilities are crucial for compliance, interoperability, and building decision-support systems that align with medical workflows.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and manage LangGraph-based healthcare solutions while addressing regulatory, ethical, and operational challenges.
By the end of this training, participants will be able to:
- Design healthcare-specific LangGraph workflows with compliance and auditability in mind.
- Integrate LangGraph applications with medical ontologies and standards (FHIR, SNOMED CT, ICD).
- Apply best practices for reliability, traceability, and explainability in sensitive environments.
- Deploy, monitor, and validate LangGraph applications in healthcare production settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with real-world case studies.
- Implementation practice in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Legal Applications
35 時間:LangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and precise control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based legal solutions with the necessary compliance, traceability, and governance controls.
By the end of this training, participants will be able to:
- Design legal-specific LangGraph workflows that preserve auditability and compliance.
- Integrate legal ontologies and document standards into graph state and processing.
- Implement guardrails, human-in-the-loop approvals, and traceable decision paths.
- Deploy, monitor, and maintain LangGraph services in production with observability and cost controls.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Dynamic Workflows with LangGraph and LLM Agents
14 時間:LangGraph is a framework for composing graph-structured LLM workflows that support branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level engineers and product teams who wish to combine LangGraph’s graph logic with LLM agent loops to build dynamic, context-aware applications such as customer support agents, decision trees, and information retrieval systems.
By the end of this training, participants will be able to:
- Design graph-based workflows that coordinate LLM agents, tools, and memory.
- Implement conditional routing, retries, and fallbacks for robust execution.
- Integrate retrieval, APIs, and structured outputs into agent loops.
- Evaluate, monitor, and harden agent behavior for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based design exercises and peer reviews.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph用於營銷自動化
14 時間:LangGraph 是一個基於圖的編排框架,支持條件化、多步驟的 LLM 和工具工作流,非常適合自動化和個性化內容管道。
本課程由講師主導,提供線上或線下培訓,面向中級營銷人員、內容策略師和自動化開發人員,旨在幫助他們使用 LangGraph 實現動態、分支的電子郵件營銷活動和內容生成管道。
在本培訓結束時,參與者將能夠:
- 設計具有條件邏輯的圖結構內容和電子郵件工作流。
- 集成 LLM、API 和數據源以實現自動化個性化。
- 在多步驟營銷活動中管理狀態、記憶和上下文。
- 評估、監控和優化工作流性能和交付結果。
課程形式
- 互動式講座和小組討論。
- 動手實驗,實現電子郵件工作流和內容管道。
- 基於場景的練習,涵蓋個性化、分段和分支邏輯。
課程定製選項
- 如需爲本課程定製培訓,請聯繫我們進行安排。
Multimodal Applications with Ollama
21 時間:Ollama is a platform that enables running and fine-tuning large language and multimodal models locally.
This instructor-led, live training (online or onsite) is aimed at advanced-level ML engineers, AI researchers, and product developers who wish to build and deploy multimodal applications with Ollama.
By the end of this training, participants will be able to:
- Set up and run multimodal models with Ollama.
- Integrate text, image, and audio inputs for real-world applications.
- Build document understanding and visual QA systems.
- Develop multimodal agents capable of reasoning across modalities.
Format of the Course
- Interactive lecture and discussion.
- Hands-on practice with real multimodal datasets.
- Live-lab implementation of multimodal pipelines using Ollama.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Ollama 入門指南:運行本地 AI 模型
7 時間:本課程為講師指導的香港(線上或線下)培訓,旨在幫助初級專業人士安裝、配置並使用Ollama在本地機器上運行AI模型。
培訓結束後,學員將能夠:
- 了解Ollama的基本原理及其功能。
- 設置Ollama以運行本地AI模型。
- 使用Ollama部署並與LLM進行互動。
- 優化AI工作負載的性能和資源使用。
- 探索本地AI部署在各行業中的應用案例。
Ollama Scaling & Infrastructure Optimization
21 時間:Ollama is a platform for running large language and multimodal models locally and at scale.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level engineers who wish to scale Ollama deployments for multi-user, high-throughput, and cost-efficient environments.
By the end of this training, participants will be able to:
- Configure Ollama for multi-user and distributed workloads.
- Optimize GPU and CPU resource allocation.
- Implement autoscaling, batching, and latency reduction strategies.
- Monitor and optimize infrastructure for performance and cost efficiency.
Format of the Course
- Interactive lecture and discussion.
- Hands-on deployment and scaling labs.
- Practical optimization exercises in live environments.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Prompt Engineering Mastery with Ollama
14 時間:Ollama is a platform that enables running large language and multimodal models locally.
This instructor-led, live training (online or onsite) is aimed at intermediate-level practitioners who wish to master prompt engineering techniques to optimize Ollama outputs.
By the end of this training, participants will be able to:
- Design effective prompts for diverse use cases.
- Apply techniques such as priming and chain-of-thought structuring.
- Implement prompt templates and context management strategies.
- Build multi-stage prompting pipelines for complex workflows.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with prompt design.
- Practical implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.