LangChain基礎培訓
LangChain 是一個開源框架,可簡化大型語言模型 (LLM) 與應用程式的集成。
這種以講師為主導的現場培訓(在線或現場)面向希望學習LangChain核心概念和架構並獲得構建AI驅動應用程式的實用技能的初級到中級開發人員和軟體工程師。
在培訓結束時,參與者將能夠:
- 掌握LangChain的基本原理。
- 設置和配置LangChain環境。
- 了解架構以及 LangChain 如何與大型語言模型 (LLM) 互動。
- 使用LangChain開發簡單的應用程式。
課程形式
- 互動講座和討論。
- 大量的練習和練習。
- 在現場實驗室環境中動手實施。
課程自定義選項
- 如需申請本課程的定製培訓,請聯繫我們進行安排。
課程簡介
LangChain簡介
- 什麼是LangChain?
- LangChain與其他框架
- LangChain在現代AI開發中的重要性
設置環境
- 安裝 Python 和必要的套件
- 設置LangChain
- 驗證安裝
LangChain的核心理念
- 瞭解LangChain架構
- 關鍵元件及其作用
- LangChain的理念和設計目標
使用 Large Language Models (LLMs)
- LLM 簡介及其功能
- LangChain如何與LLM集成
- 將LangChain連接到示例LLM
使用LangChain進行開發
- LangChain的模組化應用程式開發方法
- 構建您的第一個LangChain應用程式
- 開發的最佳做法
故障排除
結論和後續步驟
最低要求
- 基本瞭解 Python 程式設計
觀眾
- 開發人員
- 軟體工程師
Open Training Courses require 5+ participants.
LangChain基礎培訓 - Booking
LangChain基礎培訓 - Enquiry
LangChain基礎 - 咨詢詢問
咨詢詢問
Upcoming Courses
相關課程
Advanced LangGraph: Optimization, Debugging, and Monitoring Complex Graphs
35 時間:LangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI platform engineers, DevOps for AI, and ML architects who wish to optimize, debug, monitor, and operate production-grade LangGraph systems.
By the end of this training, participants will be able to:
- Design and optimize complex LangGraph topologies for speed, cost, and scalability.
- Engineer reliability with retries, timeouts, idempotency, and checkpoint-based recovery.
- Debug and trace graph executions, inspect state, and systematically reproduce production issues.
- Instrument graphs with logs, metrics, and traces, deploy to production, and monitor SLAs and costs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI Automation with n8n and LangChain
14 時間:這種以講師為主導的><loc(在線或現場)實時培訓面向希望在不編寫大量代碼的情況下使用 AI 自動化任務和流程的所有技能水準的開發人員和 IT 專業人員。
在培訓結束時,參與者將能夠:
- 使用 n8n 的可視化程式設計介面設計和實現複雜的工作流程。
- 使用 LangChain 將 AI 功能整合到工作流中。
- 為各種用例構建自定義聊天機器人和虛擬助手。
- 使用 AI 代理執行高級數據分析和處理。
使用LangChain和API自動化工作流
14 時間:這種由 講師指導的 香港 現場現場培訓(在線或現場)面向希望瞭解如何使用 LangChain 和 API 自動執行重複性任務和工作流的初級業務分析師和自動化工程師。
在本次培訓結束時,參與者將能夠:
- 瞭解與 LangChain 集成的 API 的基礎知識。
- 使用 LangChain 和 Python 自動執行重複的工作流程。
- 利用 LangChain 連接各種 API 以實現高效的業務流程。
- 使用 API 和 LangChain 的自動化功能創建和自動化自定義工作流程。
使用LangChain構建對話代理
14 時間:這種由 講師指導的 香港 現場培訓(在線或現場)面向希望加深對對話代理的理解並將 LangChain 應用於實際用例的中級專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解 LangChain 的基礎知識及其在構建對話代理中的應用。
- 使用 LangChain 開發和部署對話代理。
- 將對話代理與 API 和外部服務整合。
- 應用 Natural Language Processing (NLP) 技術來提高對話代理的性能。
LangChain開發中的倫理考量
21 時間:這種由講師指導的現場培訓在 香港(在線或現場)面向高級 AI 研究人員和政策制定者,他們希望探索 AI 開發的道德影響,並學習如何在構建 AI 解決方案時應用道德準則 LangChain。
在本次培訓結束時,參與者將能夠:
- 用 LangChain 識別 AI 開發中的關鍵道德問題。
- 瞭解 AI 對社會和決策過程的影響。
- 制定構建公平透明的 AI 系統的策略。
- 在基於 LangChain 的專案中實施合乎道德的 AI 準則。
使用LangChain提升Web Apps的用戶體驗
14 時間:這種由講師指導的 香港 現場培訓(在線或現場)面向希望利用 LangChain 創建直觀且使用者友好的 Web 應用程式的中級 Web 開發人員和 UX 設計人員。
在本次培訓結束時,參與者將能夠:
- 瞭解 LangChain 的基本概念及其在增強 Web 用戶體驗中的作用。
- 在 Web 應用程式中實現 LangChain 以建立動態和回應式介面。
- 將 API 整合到 Web 應用程式中,以提高交互性和用戶參與度。
- 使用 LangChain 的高級自定義功能優化用戶體驗。
- 分析使用者行為數據以微調 Web 應用程式性能和體驗。
LangChain:構建AI驅動的應用
14 時間:這種由講師指導的香港(在線或現場)現場培訓面向希望使用LangChain框架構建AI驅動的應用程式的中級開發人員和軟體工程師。
在培訓結束時,參與者將能夠:
- 瞭解LangChain及其元件的基礎知識。
- 將 LangChain 與 GPT-4 等大型語言模型 (LLM) 集成。
- 使用 LangChain 構建模組化 AI 應用程式。
- 排查LangChain應用程式中的常見問題。
將LangChain與雲服務集成
14 時間:這種由 講師指導的 香港 現場現場培訓(在線或現場)面向高級數據工程師和 DevOps 專業人員,他們希望通過將 LangChain 的功能與各種雲服務集成來利用 LangChain 的功能。
在本次培訓結束時,參與者將能夠:
- 與 AWS、Azure 和 Google Cloud 等主要雲平臺集成 LangChain。
- 利用基於雲的 API 和服務來增強 LangChain 驅動的應用程式。
- 擴展對話代理並將其部署到雲中,以實現即時交互。
- 在雲環境中實施監控和安全最佳實踐。
LangChain 用於數據分析和可視化
14 時間:這種講師指導的 香港 現場培訓(在線或現場)面向希望使用 LangChain 來增強其數據分析和可視化能力的中級數據專業人員。
在本次培訓結束時,參與者將能夠:
- 使用 LangChain 自動檢索和清理數據。
- 使用 Python 和 LangChain 進行高級數據分析。
- 使用 Matplotlib 和其他與 LangChain 集成的 Python 庫創建可視化。
- 利用 LangChain 從數據分析中生成自然語言洞察。
LangGraph Applications in Finance
35 時間:LangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based finance solutions with proper governance, observability, and compliance.
By the end of this training, participants will be able to:
- Design finance-specific LangGraph workflows aligned to regulatory and audit requirements.
- Integrate financial data standards and ontologies into graph state and tooling.
- Implement reliability, safety, and human-in-the-loop controls for critical processes.
- Deploy, monitor, and optimize LangGraph systems for performance, cost, and SLAs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph Foundations: Graph-Based LLM Prompting and Chaining
14 時間:LangGraph is a framework for building graph-structured LLM applications that support planning, branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at beginner-level developers, prompt engineers, and data practitioners who wish to design and build reliable, multi-step LLM workflows using LangGraph.
By the end of this training, participants will be able to:
- Explain core LangGraph concepts (nodes, edges, state) and when to use them.
- Build prompt chains that branch, call tools, and maintain memory.
- Integrate retrieval and external APIs into graph workflows.
- Test, debug, and evaluate LangGraph apps for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based exercises on design, testing, and evaluation.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph in Healthcare: Workflow Orchestration for Regulated Environments
35 時間:LangGraph enables stateful, multi-actor workflows powered by LLMs with precise control over execution paths and state persistence. In healthcare, these capabilities are crucial for compliance, interoperability, and building decision-support systems that align with medical workflows.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and manage LangGraph-based healthcare solutions while addressing regulatory, ethical, and operational challenges.
By the end of this training, participants will be able to:
- Design healthcare-specific LangGraph workflows with compliance and auditability in mind.
- Integrate LangGraph applications with medical ontologies and standards (FHIR, SNOMED CT, ICD).
- Apply best practices for reliability, traceability, and explainability in sensitive environments.
- Deploy, monitor, and validate LangGraph applications in healthcare production settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with real-world case studies.
- Implementation practice in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Legal Applications
35 時間:LangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and precise control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based legal solutions with the necessary compliance, traceability, and governance controls.
By the end of this training, participants will be able to:
- Design legal-specific LangGraph workflows that preserve auditability and compliance.
- Integrate legal ontologies and document standards into graph state and processing.
- Implement guardrails, human-in-the-loop approvals, and traceable decision paths.
- Deploy, monitor, and maintain LangGraph services in production with observability and cost controls.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Dynamic Workflows with LangGraph and LLM Agents
14 時間:LangGraph is a framework for composing graph-structured LLM workflows that support branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level engineers and product teams who wish to combine LangGraph’s graph logic with LLM agent loops to build dynamic, context-aware applications such as customer support agents, decision trees, and information retrieval systems.
By the end of this training, participants will be able to:
- Design graph-based workflows that coordinate LLM agents, tools, and memory.
- Implement conditional routing, retries, and fallbacks for robust execution.
- Integrate retrieval, APIs, and structured outputs into agent loops.
- Evaluate, monitor, and harden agent behavior for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based design exercises and peer reviews.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Marketing Automation
14 時間:LangGraph is a graph-based orchestration framework that enables conditional, multi-step LLM and tool workflows, ideal for automating and personalizing content pipelines.
This instructor-led, live training (online or onsite) is aimed at intermediate-level marketers, content strategists, and automation developers who wish to implement dynamic, branching email campaigns and content generation pipelines using LangGraph.
By the end of this training, participants will be able to:
- Design graph-structured content and email workflows with conditional logic.
- Integrate LLMs, APIs, and data sources for automated personalization.
- Manage state, memory, and context across multi-step campaigns.
- Evaluate, monitor, and optimize workflow performance and delivery outcomes.
Format of the Course
- Interactive lectures and group discussions.
- Hands-on labs implementing email workflows and content pipelines.
- Scenario-based exercises on personalization, segmentation, and branching logic.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.