課程簡介
介紹
- Chainer 與 Caffe 與 Torch
- Chainer 功能和元件概述
開始
- 了解訓練器結構
- 安裝 Chainer、CuPy 和 NumPy
- 在變數上定義函數
在 Chainer 中訓練 Neural Networks
- 構造計算圖
- 運行 MNIST 資料集示例
- 使用優化器更新參數
- 處理圖像以評估結果
在 Chainer 中使用 GPU
- 實現遞迴神經網路
- 使用多個 GPU 進行並行化
實現其他神經網路模型
- 定義 RNN 模型和運行範例
- 使用 Deep Convolutional GAN 生成圖像
- 運行 Reinforcement Learning 範例
故障排除
總結和結論
最低要求
- 對人工神經網路的理解
- 熟悉深度學習框架(Caffe、Torch 等)
- Python 程式設計經驗
觀眾
- AI 研究人員
- 開發人員
客戶評論 (5)
亨特很棒,非常有吸引力,知識淵博,風度翩翩。 做得很好。
Rick Johnson - Laramie County Community College
Course - Artificial Intelligence (AI) Overview
機器翻譯
The trainer was a professional in the subject field and related theory with application excellently
Fahad Malalla - Tatweer Petroleum
Course - Applied AI from Scratch in Python
Very flexible.
Frank Ueltzhoffer
Course - Artificial Neural Networks, Machine Learning and Deep Thinking
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.
Gudrun Bickelq
Course - Introduction to the use of neural networks
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.