課程簡介
介紹
MLOps 概述
- 什麼是MLOps?
- MLOps 在 Azure Machine Learning 體系結構中
準備 MLOps 環境
- 設定 Azure Machine Learning
模型再現性
- 使用 Azure Machine Learning 管道
- 將 Machine Learning 流程與管道橋接
容器和部署
- 將模型打包到容器中
- 部署容器
- 驗證模型
自動化操作
- 使用 Azure、Machine Learning 和 GitHub 自動執行操作
- 重新訓練和測試模型
- 推出新型號
Go監管與控制
- 創建審計跟蹤
- 管理和監視模型
總結和結論
最低要求
- 經驗 Azure Machine Learning
觀眾
- 數據科學家
客戶評論 (5)
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
Course - Architecting Microsoft Azure Solutions
非常友好和樂於助人
Aktar Hossain - Unit4
Course - Building Microservices with Microsoft Azure Service Fabric (ASF)
機器翻譯
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
The practical part, I was able to perform exercises and to test the Microsoft Azure features
Alex Bela - Continental Automotive Romania SRL
Course - Programming for IoT with Azure
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.