課程簡介
介紹
MLOps概述
- 什麼是MLOps?
- Azure Machine Learning架構中的MLOps
準備MLOps環境
- 設置Azure Machine Learning
模型可重複性
- 使用Azure Machine Learning管道
- 通過管道橋接機器學習流程
容器與部署
- 將模型打包到容器中
- 部署容器
- 驗證模型
自動化操作
- 使用Azure Machine Learning和GitHub自動化操作
- 重新訓練和測試模型
- 推出新模型
治理與控制
- 創建審計跟蹤
- 管理和監控模型
總結與結論
最低要求
- 具備Azure Machine Learning經驗
受衆
- 數據科學家
客戶評論 (5)
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
課程 - Architecting Microsoft Azure Solutions
非常友好和樂於助人
Aktar Hossain - Unit4
課程 - Building Microservices with Microsoft Azure Service Fabric (ASF)
機器翻譯
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
課程 - MLflow
The practical part, I was able to perform exercises and to test the Microsoft Azure features
Alex Bela - Continental Automotive Romania SRL
課程 - Programming for IoT with Azure
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.